Appendix 2.5.2
Sample Need Specification

An improved, long-term way to defibrillate the ventricle

Problem

- Defibrillation is the use of energy to "reset" normal rhythm
 - mainly used to terminate ventricular fibrillation (VF), a fatal arrhythmia
- Only long-term way to defibrillate is via an implantable cardioverter defibrillator (ICD)
- There are numerous limitations to the use of an ICD
 - amount of energy required to defibrillate with an ICD usually causes pain
 - ICD batteries last <3-7 years so ICD generators need replacement
 - though small, ICDs are placed in the chest resulting in cosmetic effects
 - getting “shocked” (defibrillated) can be psychologically traumatic

Burden of VF

- ICD statistics can serve as a surrogate for burden of potential and real VF
 - >260,000 patients with ICD indications, including those at risk (prophylactic)
 - >150,000 ICDs implanted annually in U.S.
 - cost >$3 billion worldwide currently
 - medications have been shown not to be as effective as ICDs
- Patients types
 - higher risk of VF in patients with low ejection fraction (EF), usually <30-35%
 - candidates for primary prevention ICD implantation (prophylactic)
 - patients who have had documented VF or survived cardiac arrest
 - candidates for secondary prevention ICD implantation

Mechanisms of VF

- VF is theorized to occur and persist via a four-stage mechanism
 - stage I (tachysystolic stage): premature ventricular beats can induce initial wavebreak with large reentrant wave; usually lasts 1-2 sec
 - stage II (convulsive incoordination): multiple wavelets and reentry over smaller regions of myocardium; lasts 15-40 sec
 - stage III (tremulous incoordination): wavelets and independent contraction in even smaller areas; lasts 2-4 min
 - stage IV (atonic fibrillation): slow passage of wavelets over very small distances with loss of all visible contractility
- VF most often seen in the setting of structural heart disease or ischemia
 - these can promote reentry and VF stages III and IV
ICDs deliver defibrillation energy in stage II

Mechanism of defibrillation

- Exact mechanism of why administration of a pulse of energy “resets” heart unknown

- Hypothesized to be due to cessation of most of the multiple wavelets and reentrant areas in VF, thereby permitting resumption of coordinated excitation and contraction
 - requires rapid induction of changes in transmembrane potential of myocytes
 - prolonging of refractoriness of action potential may be important
 - requires a critical mass of myocardium (>75%) to be involved
 - must not reinitiate fibrillation
 - if only part of the heart affected, heterogeneity of refractoriness can occur leading to reentry and eventual fibrillation
 - shock that halts VF must not reinitiate VF through same mechanism by which a shock of same strength during vulnerable period can initiate VF (upper limit of vulnerability)
 - exact ionic mechanisms of changes in transmembrane potential not known

- Defibrillation can be achieved using various waveforms
 - biphasic waveforms require less current and energy than monophasic waveforms to defibrillate and are usually more successful
 - waveform duration, waveform shape, electrode impedance, and defibrillator capacitance all important in success of defibrillation

- Energy required to defibrillate is based on minimum potential gradient that needs to be created in a sufficient amount of myocardium
 - location of defibrillation electrodes play significant role
 - from body surface, usually need 200-360 Joules for defibrillation
 - only 4-20% of current reaches heart, due to loss through tissue
 - with leads in heart, usually only need 20-34 Joules
 - distance between electrodes, amount of heart “within” circuit, size of electrodes, respiration, etc… also play role
 - large epicardial patches require less energy for defibrillation
 - mathematical formulations model how a pulse of energy in one area can affect transmembrane potential at a distance away from electrode
 - the cell membrane and gap junctions are viewed as a high-resistance barriers while the intra- and extracellular spaces are low-resistance spaces
 - current is forced to “go around” these high-resistance barriers
 - this exit and reentry of current causes various degrees of depolarization or hyperpolarization in different parts of the intracellular space
o since the barriers function as discontinuities, they can be thought of as secondary sources of action potentials
o this causes perpetuation of the current at a distance from the electrode

• **Methods of defibrillation**

 § ICD – only current long-term solution
 • circuit is from coil on lead in ventricle (usually right) to a second coil more proximal on lead, to ICD generator, or to subcutaneous array on patient’s side/back
 • may also be attached to epicardial patches, but uncommon
 § LifeVest – for short-term use outside hospital
 • usually if temporary risk of VF or as bridge to ICD
 § External pads or paddles – for emergency or while in hospital
 • circuit formed by paddles or two patches
 § Internal paddles placed on surface of heart – usually only during open heart surgery

• **Patient issues with ICDs**

 § Pain
 • defibrillation feels like being “kicked in the chest”
 § likely due to activation of skeletal muscles and nerves in the chest and abdomen
 • patient can feel even 1-2 Joules of energy
 • changes in sensing require re-testing of defibrillation threshold
 § requires induction of VF and potential risk of death and sensation of “shock”

 § Generator implantation and replacement
 • internal leads require permanent implantation in venous system and fixation to heart
 § can become infected requiring removal, which carries significant risk
 § leads may fail, requiring additional leads which can reduce lumen of vessel
 • current ICD batteries last <3-7 years leading to need for generator changes
 § generator changes expose patient to risks of additional procedure and infection
 § requires re-testing of defibrillation threshold

 § Cosmetic
 • though ICDs small, implantation in the chest results in small scar
 • in thin patients, may often see outline of device

 § Psychological
 • sensation of being “shocked” can be very traumatic
- increases thoughts about potentially lethal events and possible death
- increases fear of performing activities that may lead to VF and “shock”

- Other
 - devices may be affected by magnets and may limit ability to get MRIs
 - devices can only be interrogated with programmer
 - sometimes difficult to ascertain device settings in emergency setting

- New approaches being developed to treat arrhythmias
 - Subcutaneous, leadless ICDs only for defibrillation
 - sensing may be an issue requiring methods beyond sensing only rate
 - may require very high energy to successfully defibrillate
 - Intravascular ICD
 - could be low-cost and implanted in many patients
 - possible first-line therapy prior to permanent ICD
 - few shocks only
 - may be thrombogenic
 - Cell therapy
 - May be able to reconstitute damaged, non-functioning tissue thereby preventing VF

- Need criteria – for Fibrillation Fiona: A 64 year old active, currently asymptomatic female with a history of ischemic cardiomyopathy who underwent prophylactic ICD implantation after medications optimized

- Absolute requirements
 - must improve at least one of the four main limitations of current ICDs without leading to new limitations or worsening of current benefits or limitations of ICDs:
 - pain from defibrillation
 - need for replacement every <3-7 years
 - cosmetic effects
 - psychological effects
 - if affects procedure, should not be any more invasive than current implantation or replacement procedures
 - should have no effect on current medical therapy and should not be affected by medications

- Desirable requirements
 - no effect on cardiac function
 - easy-to-use/learn for average electrophysiologist
 - patient-friendly