
Appendix- 4.5.4 © 2014 The Board of Trustees of the Leland Stanford Junior University updated 11.16.14

Appendix 4.5.4
Special Considerations for the Development of Application and Software

Prototypes

Software is becoming increasingly important in the healthcare industry. Good coding
practices are essential when developing in health-oriented information technology (IT)
solutions. The following information serves as a basic introduction to early-stage
software development.

Software Design Methodology

Software is a broad term that refers to a set of instructions written for a central
processing unit (CPU) to perform in order to complete a task. Software can be written
using a variety of languages, and it exists in many different forms. For example, with a
mobile health application, the app itself is a type of software. The mobile phone
operating system is another type of software. The phone’s firmware is also a software
program that, among other things, controls the hardware to allow the phone to connect
to cellular towers. In the broader medical device space, software can range from the
firmware inside a medical diagnostic machine, to desktop applications to view medical
images, to enterprise-level applications such as an electronic medical record (EMR)
system. Cloud-based applications are also becoming more and more prevalent in health
care. Cloud applications typically use a "software as a service" (SaaS) model, where the
application is hosted on the Internet using a network of remote servers instead of being
installed locally on a personal computer. For instance, cloud applications in healthcare
are already being used to store protected health information (PHI) for applications, run
algorithms on remote servers to process data, and transform disparate data from
various sources into a common form for storage and analysis in a database.

Each type of software has its own unique development and testing challenges. For
instance, debugging and testing firmware is substantially different than debugging a
cloud-based application. Since firmware is closely tied to hardware, testing the firmware
often requires its own dedicated test instruments such as a logic analyzer and
oscilloscope. A cloud-based system, on the other hand, would need to be tested for
system redundancy and resilience against failure under extreme user loads. Enterprise
applications, which are different than both mobile and desktop applications, have their
own unique considerations, including the need to seamlessly integrate with existing
enterprise applications, have robust auditing capabilities, and provide access control.

Regardless of which type of software innovators are developing, they can use one of
two common methodologies for software design: (1) the waterfall method, and (2) the
agile method. In the waterfall design methodology, each step needs to be completed
before the next step can begin. Innovators begin by analyzing the entire problem that
needs to be solved and defining specifications for each step of the solution. Then, they
enter the design phase, which focuses on how to approach implementing the solution.
Key design questions range from which system architecture, programming language,
and libraries to use, to the inputs and outputs of each module and their function. The

Appendix- 4.5.4 © 2014 The Board of Trustees of the Leland Stanford Junior University updated 11.16.14

next step is the actual coding, followed by testing and maintenance. In waterfall design,
significant effort is devoted to defining the specifications for each module before any
coding begins. The downside to this type of design methodology is that any downstream
change to the specification can necessitate massive changes to each of the designs in
the subsequent steps. However, the waterfall design method does create robust
documentation throughout the process, which is perhaps one of its strongest benefits
and can be invaluable if the software will be subject to FDA review (see 4.2 Regulatory
Basics for more information about U.S. regulation of mobile health technologies).

In agile development, the project is broken down into several manageable pieces. The
core pieces are implemented first, to create a bare-bone, but functional application early
in the project. Then, new features are added to the application. Each piece of the
project is then implemented, often in short sprints. A sprint starts by defining the
requirements for a particular block, implementing and testing that block, and seeking
feedback from users. Feedback can then be incorporated back into that that block by
refining the block’s requirements. This iterative design process allows for the project to
adapt to changing requirements while at the same time ensuring that the end product is
what the user actually expects. The agile design methodology allows for changing
specifications, which might arise from uncertainty in the healthcare environment.

Test-driven design is one form of agile development in which the design specifications
are defined as a series of test cases. The test cases outline what the function is
expected to do. Initially, all tests fail, as no code has been written. As the programmer
writes code to implement features, test cases start to pass one by one until all of the
test cases perform as desired. By writing test cases first, emphasis is placed on how
one function should interface with others. By defining the interface for the function first,
it ensures that the code written by multiple programmers will work seamlessly together.
In addition, the tests serve as a type of technical documentation for the code as each
test is effectively a design specification for the functional code. Other programmers can
review the test cases to better understand what each function does and how to use the
function. As the project evolves in complexity, another benefit to test-driven
development is that if new code breaks any existing features, the programmer will be
notified via failing tests. With all code written having a test case associated with it,
innovators can ensure that the final product will conform to its specifications.

Selecting which methodology to follow depends on what type of software the team is
writing. For example, firmware specifications are often well defined upfront from the
hardware datasheet, so the waterfall method is generally a good method to follow.
However, the agile method might be more suitable when writing a consumer application
where specifications constantly change based on user feedback.

Prototyping Applications

If the innovators decide that the solution to their clinical need is an application, they will
want to begin the development process with prototyping. Prototyping is critical because
there is much more that goes into writing an application than just coding. Because it is

Appendix- 4.5.4 © 2014 The Board of Trustees of the Leland Stanford Junior University updated 11.16.14

relatively easy and inexpensive to begin coding, one common pitfall of application
development is to start writing software before user needs are fully understood. This
can lead to technological solutions looking for problems to solve, rather than needs-
based innovation.

To avoid this risk, innovators should create a vision for the solution based on the need
criteria outlined in the need specification. In doing so, they should keep in mind the
context where the application will be used. For example, software designed for a
desktop computer is different from software designed for mobile use. It is similarly
important to fully understand the current user workflow and how the solution can
seamlessly integrate into it. Any perceived inconvenience to the user could hinder the
adoption of the solution.

Storyboarding

Storyboarding is an effective technique to explain the proposed solution to the target
user and other relevant stakeholders. Typically drawn using paper and pencil, the
storyboard allows the innovators to tell a story about how the application will be used to
address the need. The storyboard is typically divided into multiple scenes, with each
scene illustrating how a different element of the application will be used and in what
context (details such as the graphical user interface are left to be detailed in later
stages). With the storyboard, feedback can be solicited from key stakeholders (e.g.,
physicians or patients) to ensure that the proposed solution and workflow is positively
received before coding begins.

Graphical User Interface

After storyboarding, innovators can begin thinking about the design of the graphical user
interface. Users interact with the application through its graphical user interface, and a
thoughtfully designed interface goes a long way in creating a good perception of the
solution. This is especially true if the application handles PHI. Because users cannot
see the backend efforts the developer have made to securely handle PHI, they will often
judge the security of the program on the professionalism of the graphical user interface.
If the developers do not present a polished interface, the users may have doubts about
the overall credibility of the system.

A good user interface does not solely depend on pretty graphics (although that can
influence user perception.) The key factor to a well-designed application interface how
easy and intuitive the workflow is to the user—it should be simple and self-explanatory
enough that users can navigate the application without instructions. Getting to this point
usually requires a significant investment of time, as well as multiple iterations. As with
other forms of prototyping, innovators are encouraged to gather user feedback early
and often.

When designing a use interface, it is essential to follow normal interface conventions
and avoid adding overly complicate features to the system. For example, a submit

Appendix- 4.5.4 © 2014 The Board of Trustees of the Leland Stanford Junior University updated 11.16.14

button on a web page should look like an actual button, and not a text link or an icon.
Additionally, it should be placed in a location a user would expect to find it, such as the
bottom right of the page. In addition to affecting the user experience, innovators should
recognize that the complexity of the workflow has an economic impact on the product
since the more education/training that is needed, the higher the cost to use the system.
One metric to measure simplicity is the number of clicks required to perform a certain
task. If users can get the task done in two clicks versus three, the two-click method is
almost always more desirable.

Figure 4.5.4-1 – The simplified user registration form on the right provides a
better design for multiple reasons. The labels and the text input fields are

separated, allowing the eye to easily follow the flow. All of the fields that require
user input are aligned, including the submit button. The date input field displays a

hint, showing the expected format. The submit button is clearly defined and
labeled “Create Account,” while the cancel button is now a link that guides the
user to the next step. This differentiation eliminates confusion regarding which
button to press to complete the registration process (courtesy of Frank Wang).

One method for prototyping a graphical interface is to use wireframe sketches.
Wireframe sketches are simplistic representations of how the application would look and
feel, with the user elements represented using blocks. The wireframe sketches have
just enough detail that users can imagine how the application will work, but not so much
that they find it hard to give critical feedback. If the users show any confusion about how
a task would be performed in the mockup, the innovators should try to understand
where the confusion arises and investigate if it can be alleviated through a better
interface design.

Once satisfied with the wireframe sketches, innovators can access templates in
Photoshop, Illustrator, or PowerPoint to create pixel-perfect renderings of the images.
Such templates typically contain many images of common user interface elements,
allowing innovators to drag and drop the individual elements on the page to form the
interface.

Appendix- 4.5.4 © 2014 The Board of Trustees of the Leland Stanford Junior University updated 11.16.14

Figure 4.5.4-2 – A sample wireframe sketch for a health-related website includes
just enough detail to explain how the page will function. It can be used to collect
feedback from various stakeholders (courtesy of Vynca).

System Architecture and HIPAA Considerations

Once detailed user specifications are defined, the programmer(s) can start designing
the system architecture to support the desired features. The system architecture can
range from a simple native application to a combination of a native application with a
remote database server to store PHI data in the cloud. In designing the architecture, it is
important for the programmer to understand any relevant limitations, which might stem
from constraints of hospital IT systems, HIPAA1 regulations, or some other user-defined
boundary conditions.

To determine limitations from a hospital IT perspective, it is beneficial to work closely
with representatives of the hospital IT department. During storyboarding, hospital IT
should be asked to validate the workflow and feasibility of the solution in a hospital-
specific context. During system architecture design, these should also be involved in

Appendix- 4.5.4 © 2014 The Board of Trustees of the Leland Stanford Junior University updated 11.16.14

working out the implementation details for the solution. For example, if the solution
depends on interfacing with the hospital EMR system, the programmers will need to
determine what integration hooks are available that are compatible with hospital IT
security policies. Or, if they are designing a website, they must determine which
browser a particular hospital uses. This is important, for instance, since it can help
determine if the website can utilize certain new HTML features that only modern
browsers support. Working closely with representatives from hospital IT, programmers
can create a detailed system architecture plan that will work within the hospital
environment.

If the application deals with PHI, it will most likely be regulated under HIPAA. Many
HIPAA requirements affect system architecture design, so innovators can save
significant time and effort by designing these features into the application in the
beginning, rather than as an afterthought. It is highly advisable to retain HIPAA counsel
or a consultant to ensure that the application is fully HIPAA compliant.

The HIPAA privacy rule governs how companies can use and disclose PHI. For
example, under HIPAA, any application must document when PHI is disclosed to other
parties. The HIPAA security rule governs how the system secures PHI. For example,
good design practice is to encrypt all data during transmission and rest. By encrypting
data during transmission from the server to the user, it prevents a malicious third party
from intercepting the transmission.2 Encrypting the data at rest minimizes the risk of PHI
disclosure if a malicious third party steals the server’s hard drive server or a backup
copy of the database. The security rule also requires the application to create an audit
trail of how PHI is accessed within the system. If the application is disclosing PHI, it
needs to verify that the people requesting such access are authorized to do so. From a
development perspective, this requires some forethought since much of the information
an application can use to authenticate a user is publically accessible online.

If the application requires the storage of PHI on a remote data server, the team will
need to be sure to contract with a HIPAA compliant hosting provider. Innovators can
work with that hosting provider to determine the optimal server architecture, data
backup and recovery plan, and redundancy strategy to minimize downtime due to
unforeseen events.

Coding

Though the actual coding of software applications is beyond the scope of this section,
innovators will benefit from keeping a few tips in mind. Depending on the system
architecture, whoever is selected to be the programmers for a project will need to
decide on the tools most suitable for the coding task. This includes selecting the
programming language(s) and the database to employ for the storage of the data. The
programmers will also decide which software design methodology to use (e.g., the
waterfall or the agile design method).

Appendix- 4.5.4 © 2014 The Board of Trustees of the Leland Stanford Junior University updated 11.16.14

It is critical to have a means through which programmers can communicate with each
other and with other members of the team. There are various ways to do this, including
the use of a revision control repository, which creates a record of edits made to the
source code (many such open-source tools are available online). A bug or feature
tracker is another important tool for communication. These trackers allow non-
programmers to participate in the coding process, by submitting requests for new
features or by reporting bugs. They also allow everyone to track the progress of
development. Documenting the source code is also crucial to facilitate communication
between programmers. Although not strictly required for HIPAA compliance, it is good
design practice (again, many open-source tools are available online).

Conclusion

Based on this overview, innovators should be able to prototype the initial feel of an
application and then communicate the vision to the programmers who will be
responsible for implementing it. Ideally, programmers with familiarity with healthcare
software and its caveats will be involved from early in the project. Regardless, all
innovators should remember to understand relevant regulations so they can design the
solution with these constraints in mind from the start. Additionally, they are encouraged
to continually seek feedback from users throughout the design and development
process to ensure that the application does, indeed, solve the key user problems
without introducing new ones.

Additional Resources

• Jonathan Anderson, John McRee, Robb Wilson, Effective UI: The Art of Building
Great User Experience in Software (O’Reilly Media, 2010) – A good introduction
to project management for software design.

• Bill Scott, Theresa Neil, Designing Web Interfaces: Principles and Patterns for
Rich Interactions (O’Reilly Media, 2009) – Important insights on developing
consistent, effective user interfaces for the web.

• Jonathan Rasmussion, The Agile Samurai: How Agile Masters Deliver Great
Software (Pragmatic Bookshelf, 2010) – And easy-to-read introduction to various
aspects of agile software development.

1 HIPAA stands for the Health Insurance Portability and Accountability Act, which is the federal law
that protects personal medical information and recognizes the rights to relevant medical information
of family caregivers and others directly involved in providing or paying for care.
2 A simple way to encrypt data during transmission is to use Transportation Layer Security (TLS) by
purchasing a Secure Sockets Layer (SSL) certificate. This encryption method is employed when a
user visits a site that begins with HTTPS, such as a banking or credit card website. Securing data at
rest will require a bit more thought.

